homotopy idempotent - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

homotopy idempotent - перевод на русский

Splitting idempotents; Split idempotent; Idempotent completion

homotopy idempotent      

математика

гомотопический идемпотент

idempotent endomorphism         
ELEMENT X OF A RING SUCH THAT X² = X
Abelian ring; Centrally primitive; Central idempotent element; Central idempotent; Idempotent element (ring theory); Idempotent endomorphism; Idempotents

математика

идемпотентный эндоморфизм

central idempotent         
ELEMENT X OF A RING SUCH THAT X² = X
Abelian ring; Centrally primitive; Central idempotent element; Central idempotent; Idempotent element (ring theory); Idempotent endomorphism; Idempotents

математика

центральный идемпотент

Определение

idempotent
[???d?m'p??t(?)nt, ??'d?mp?t(?)nt]
¦ noun Mathematics an element of a set which is unchanged in value when operated on by itself.
Origin
C19: from L. idem 'same' + potent1.

Википедия

Karoubi envelope

In mathematics the Karoubi envelope (or Cauchy completion or idempotent completion) of a category C is a classification of the idempotents of C, by means of an auxiliary category. Taking the Karoubi envelope of a preadditive category gives a pseudo-abelian category, hence the construction is sometimes called the pseudo-abelian completion. It is named for the French mathematician Max Karoubi.

Given a category C, an idempotent of C is an endomorphism

e : A A {\displaystyle e:A\rightarrow A}

with

e e = e {\displaystyle e\circ e=e} .

An idempotent e: AA is said to split if there is an object B and morphisms f: AB, g : BA such that e = g f and 1B = f g.

The Karoubi envelope of C, sometimes written Split(C), is the category whose objects are pairs of the form (A, e) where A is an object of C and e : A A {\displaystyle e:A\rightarrow A} is an idempotent of C, and whose morphisms are the triples

( e , f , e ) : ( A , e ) ( A , e ) {\displaystyle (e,f,e^{\prime }):(A,e)\rightarrow (A^{\prime },e^{\prime })}

where f : A A {\displaystyle f:A\rightarrow A^{\prime }} is a morphism of C satisfying e f = f = f e {\displaystyle e^{\prime }\circ f=f=f\circ e} (or equivalently f = e f e {\displaystyle f=e'\circ f\circ e} ).

Composition in Split(C) is as in C, but the identity morphism on ( A , e ) {\displaystyle (A,e)} in Split(C) is ( e , e , e ) {\displaystyle (e,e,e)} , rather than the identity on A {\displaystyle A} .

The category C embeds fully and faithfully in Split(C). In Split(C) every idempotent splits, and Split(C) is the universal category with this property. The Karoubi envelope of a category C can therefore be considered as the "completion" of C which splits idempotents.

The Karoubi envelope of a category C can equivalently be defined as the full subcategory of C ^ {\displaystyle {\hat {\mathbf {C} }}} (the presheaves over C) of retracts of representable functors. The category of presheaves on C is equivalent to the category of presheaves on Split(C).

Как переводится homotopy idempotent на Русский язык